Monodromy in Hamiltonian Floer Theory
نویسنده
چکیده
Schwarz showed that when a closed symplectic manifold (M,ω) is symplectically aspherical (i.e. the symplectic form and the first Chern class vanish on π2(M)) then the spectral invariants, which are initially defined on the universal cover of the Hamiltonian group, descend to the Hamiltonian group Ham(M,ω). In this note we describe less stringent conditions on the Chern class and quantum homology of M under which the (asymptotic) spectral invariants descend to Ham(M,ω). For example, they descend if the quantum multiplication of M is undeformed and H2(M) has rank > 1, or if the minimal Chern number is at least n+ 1 (where dimM = 2n) and the even cohomology of M is generated by divisors. The proofs are based on certain calculations of genus zero Gromov–Witten invariants. As an application, we show that the Hamiltonian group of the one point blow up of T 4 admits a Calabi quasimorphism. Moreover, whenever the (asymptotic) spectral invariants descend it is easy to see that Ham(M,ω) has infinite diameter in the Hofer norm. Hence our results establish the infinite diameter of Ham in many new cases. We also show that the positive part of the Hofer norm is nontrivial on the (compactly supported) Hamiltonian group for all noncompact manifolds as well as for a large class of closed manifolds.
منابع مشابه
Reidemeister Torsion in Floer - Novikov Theory and Counting Pseudo
This is the first part of an article in two parts, which builds the foundation of a Floer-theoretic invariant, IF . The Floer homology can be trivial in many variants of the Floer theory; it is therefore interesting to consider more refined invariants of the Floer complex. We consider one such instance—the Reidemeister torsion τF of the FloerNovikov complex of (possibly non-hamiltonian) symplec...
متن کاملHofer’s Geometry and Floer Theory under the Quantum Limit
In this paper, we use Floer theory to study the Hofer length functional for paths of Hamiltonian diffeomorphisms which are sufficiently short. In particular, the length minimizing properties of a short Hamiltonian path are related to the properties and number of its periodic orbits.
متن کاملAnti-symplectic Involution and Maslov Indices
We carry out some first steps in setting up a theory for Lagrangian Floer theory, mimicking Seidel’s construction for Hamiltonian Floer homology [7], for the subgroup HamL(M,ω) of Ham(M,ω) which preserves the Lagrangian L. When the symplectic manifold M has anti-symplectic involution c and L is the fixed Lagrangian submanifold, we consider the subgroup Hamc(M,ω) which commute with c. In the lat...
متن کاملSpectral Numbers in Floer Theories
The chain complexes underlying Floer homology theories typically carry a real-valued filtration, allowing one to associate to each Floer homology class a spectral number defined as the infimum of the filtration levels of chains representing that class. These spectral numbers have been studied extensively in the case of Hamiltonian Floer homology by Oh, Schwarz, and others. We prove that the spe...
متن کاملFloer homology of families I
In principle, Floer theory can be extended to define homotopy invariants of families of equivalent objects (e.g. Hamiltonian isotopic symplectomorphisms, 3-manifolds, Legendrian knots, etc.) parametrized by a smooth manifold B. The invariant of a family consists of a spectral sequence whose E2 term is the homology of B with twisted coefficients in the Floer homology of the fibers. For any parti...
متن کاملA Lagrangian Piunikhin-salamon-schwarz Morphism
In this article we explore to what extend the techniques of Piunikhin, Salamon and Schwarz in [PSS96] can be carried over to Lagrangian Floer homology. In [PSS96] the authors establish an isomorphism between Hamiltonian Floer homology and singular homology of the underlying symplectic manifold. In general, Lagrangian Floer homology is not isomorphic to the singular homology of the Lagrangian su...
متن کامل